Abstract

With the advent of image processing and computer vision for automotive under real-time constraints, the need for fast and architecture-optimized arithmetic operations is crucial. Alternative and efficient representations for real numbers are starting to be explored, and among them, the recently introduced posit$$^{\mathrm{TM}}$$ number system is highly promising. Furthermore, with the implementation of the architecture-specific mathematical library thoroughly targeting single-instruction multiple-data (SIMD) engines, the acceleration provided to deep neural networks framework is increasing. In this paper, we present the implementation of some core image processing operations exploiting the posit arithmetic and the ARM scalable vector extension SIMD engine. Moreover, we present applications of real-time image processing to the autonomous driving scenario, presenting benchmarks on the tinyDNN deep neural network (DNN) framework.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call