Abstract

Abstract We present a fast data-driven model predictive control (MPC) strategy for connected and automated vehicles, which can ensure collision avoidance in the presence of uncertainty in shared/predicted trajectory of preceding vehicles. The proposed control strategy focuses on improvement in fuel economy and computational efficiency. We exploit a data-driven modeling approach to identify a linear predictor for the nonlinear system and evaluate a deterministic equivalent of the probabilistic collision avoidance constraint to formulate the equivalent convex optimal control problem. We then develop a hierarchical control framework with sampling-based high-level control and fast MPC-based low-level control. Simulation results show the efficacy of the proposed approach both in terms of computation time and fuel efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.