Abstract

Abstract By using the cutter location (CL) surface, fast and stable computation of the cutter path for machining complicated molds and dies can be realized. State-of-the-art graphics processing units (GPUs) are equipped with special hardware named ray tracing (RT) cores dedicated to image processing (called ray tracing) for 3D computer graphics. Using RT cores, it is possible to quickly compute the intersection points between a set of straight lines and polygons. In this paper, we propose a novel CL surface computation method using the RT core. The RT core was originally designed to accelerate 3D computer graphics processing. For the development of software using RT cores, it is necessary to use the OptiX application programming interface (API) library for computer graphics. We demonstrate how to use the OptiX API in the development of software for CL surface computations. Computational experiments were carried out, and it was confirmed that it is possible to obtain the CL surface based on a very high-resolution Z-map several times faster than the depth buffer-based method, which has been considered to be the fastest to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call