Abstract
As a core component, the catalyst layer (CL) is widely used in fuel cell, metal-air battery, and other energy conversion devices. Herein, a highly efficient method for CL preparation via fast current-driven synthesis followed by pyrolysis is proposed. Compared with previously reported fabrication procedures of zeolite imidazolate frameworks (ZIF)-based CLs, this method directly deposits the ZIF precursor onto the conductive substrate in a very short time (≤15min). The self-supporting CL, converted from ZIF membrane by simple single-step pyrolysis, is assembled with the gas diffusion layer to obtain cathode. Electrochemical tests exhibit a small potential gap (0.83V) between the oxygen reduction and evolution reactions, as well as high performance and excellent stability for Zn-air battery (241mW cm-2 at 390mA cm-2 ), due to the unique design of a bi-continuous framework (interconnected pores and long carbon nanotubes) and Co-based active sites. This work may provide new directions for the fast fabrication of non-platinum group metal CLs for metal-air batteries or fuel cell applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.