Abstract

Crystal growth kinetics and liquid dynamics of 1,2-diphenylcyclopentene (DPCP) and 1,2-diphenylcyclohexene (DPCH) were characterized by optical microscopy and dielectric spectroscopy. These two molecules are structurally homologous and dynamically similar to the well-studied glassformer ortho-terphenyl (OTP). In the supercooled liquid states of DPCP and DPCH, the kinetic component of crystal growth ukin has a power law relationship with the primary structural relaxation time τα, ukin [proportionality] τα(–ξ) (ξ ≈ 0.7), similar to OTP and other fragile liquids. Near the glass transition temperature (Tg), both DPCP and DPCH develop much faster crystal growth via the so-called GC (glass to crystal) mode, again similar to the behavior of OTP. We find that the α-relaxation process apparently controls the onset of GC growth, with GC growth possible only at sufficiently low fluidity. These results support the view that GC crystal growth can only occur in systems where the liquid and crystal exhibit similar local packing arrangements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.