Abstract

Li's Fourier factorization rules [J. Opt. Soc. Am. A13, 1870 (1996)] should be applied to achieve a fast convergence rate in the analysis of diffraction gratings with the Fourier modal method. I show, however, that Li's inverse rule cannot be applied for periodic patterns of graphene when the conventional boundary condition is used. I derive an approximate boundary condition in which a nonzero but sufficiently small height is assumed for the boundary. The proposed boundary condition enables us to apply the inverse rule, leading to a significantly improved convergence rate. A periodic array of graphene ribbons is in fact a special type of finite-conductivity strip grating, and thus the proposed approach is also applicable to these kinds of structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.