Abstract

We consider the problem of distributed learning , where a network of agents collectively aim to agree on a hypothesis that best explains a set of distributed observations of conditionally independent random processes. We propose a distributed algorithm and establish consistency, as well as a nonasymptotic, explicit, and geometric convergence rate for the concentration of the beliefs around the set of optimal hypotheses. Additionally, if the agents interact over static networks, we provide an improved learning protocol with better scalability with respect to the number of nodes in the network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.