Abstract
This paper introduces a fast continuous collision detection technique for polyhedral rigid bodies. As opposed to most collision detection techniques, the computation of the first contact time between two objects is inherently part of the algorithm. The method can thus robustly prevent objects interpenetrations or collisions misses, even when objects are thin or have large velocities. The method is valid for general objects (polygon soups), handles multiple moving objects and acyclic articulated bodies, and is efficient in low and high coherency situations. Moreover, the method can be used to speed up existent continuous collision detection methods for parametric or implicit rigid surfaces. The collision detection algorithms have been successfully coupled to a real-time dynamics simulator. Various experiments are conducted that show the method's ability to produce high-quality interaction (precise objects positioning for example) between models up to tens of thousands of triangles, which couldn't have been performed with previous continuous methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.