Abstract
A composite likelihood is a combination of low-dimensional likelihood objects useful in applications where the data have complex structure. Although composite likelihood construction is a crucial aspect influencing both computing and statistical properties of the resulting estimator, currently there does not seem to exist a universal rule to combine low-dimensional likelihood objects that is statistically justified and fast in execution. This paper develops a methodology to select and combine the most informative low-dimensional likelihoods from a large set of candidates while carrying out parameter estimation. The new procedure minimizes the distance between composite likelihood and full likelihood scores subject to a constraint representing the afforded computing cost. The selected composite likelihood is sparse in the sense that it contains a relatively small number of informative sub-likelihoods while the noisy terms are dropped. The resulting estimator is found to have asymptotic variance close to that of the minimum-variance estimator constructed using all the low-dimensional likelihoods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.