Abstract

A new global isotropy index (GII) is proposed to quantify the configuration independent isotropy of a robot's Jacobian or mass matrix. A new discrete global optimization algorithm is also proposed to optimize either the GII or some local measure without placing any conditions on the objective function. The algorithm is used to establish design guidelines and a globally optimal architecture for a planar haptic interface from both a kinematic and dynamic perspective and to choose the optimum geometry for a 6-DOF Stewart Platform. The algorithm demonstrates consistent effort reductons of up to six orders of magnitude over global searching with low sensitivity to initial conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.