Abstract

A fast, fully implicit approximate factorization algorithm designed to solve the conservative, transonic, full-potential equation in either two or three dimensions is described. The algorithm uses an upwind bias of the density coefficient for stability in supersonic regions. This provides an effective upwind difference of the streamwise terms for any orientation of the velocity vector (i.e., rotated differencing), thereby greatly enhancing the reliability of the present algorithm. A numerical transformation is used to establish an arbitrary body-fitted, finite-difference mesh. Computed results for both airfoils and simplified wings demonstrate substantial improvement in convergence speed for the new algorithm relative to standard successive-line over-relaxation algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.