Abstract

Although the Spectral Correlation is one of the most versatile spectral tools to analyze cyclostationary signals (i.e. signals comprising hidden periodicities or repetitive patterns), its use in condition monitoring has so far been hindered by its high computational cost. The Cyclic Modulation Spectrum (the Fourier transform of the spectrogram) stands as a much faster alternative, yet it suffers from the uncertainty principle and is thus limited to detect relatively slow periodic modulations. This paper fixes the situation by proposing a new fast estimator of the spectral correlation, the Fast Spectral Correlation, based on the short-time Fourier transform (STFT). It proceeds from the property that, for a cyclostationary signal, the STFT evidences periodic flows of energy in and across its frequency bins. The Fourier transform of the interactions of the STFT coefficients then returns a quantity which scans the Spectral Correlation along its cyclic frequency axis. The gain in computational cost as compared to the conventional estimator is like the ratio of the signal length to the STFT window length and can therefore be considerable. The validity of the proposed estimator is demonstrated on non trivial vibration signals (very weak bearing signatures and speed varying cases) and its computational advantage is used to compute a new quantity, the Enhanced Envelope Spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.