Abstract

Fast, accurate and memory-efficient method is proposed for computing orthogonal Fourier---Mellin moments. Since the basis polynomials are continuous orthogonal polynomials defined in polar coordinates over a unit disk, the proposed method is applied to polar coordinates where the unit disk is divided into a number of non-overlapping circular rings that are divided into circular sectors of the same area. Each sector is represented by one point in its center. The implementation of this method completely removes both approximation and geometrical errors produced by the conventional methods. Based on the symmetry property, a fast and memory-efficient algorithm is proposed to accelerate the moment's computations. A comparison to conventional methods is performed. Numerical experiments are performed to ensure the efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.