Abstract
Discrete Hahn polynomials (DHPs) and their moments are considered to be one of the efficient orthogonal moments and they are applied in various scientific areas such as image processing and feature extraction. Commonly, DHPs are used as object representation; however, they suffer from the problem of numerical instability when the moment order becomes large. In this paper, an operative method to compute the Hahn orthogonal basis is proposed and applied to high orders. This paper developed a new mathematical model for computing the initial value of the DHP and for different values of DHP parameters (<inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula>). In addition, the proposed method is composed of two recurrence algorithms with an adaptive threshold to stabilize the generation of the DHP coefficients. It is compared with state-of-the-art algorithms in terms of computational cost and the maximum size that can be correctly generated. The experimental results show that the proposed algorithm performs better in both parameters for wide ranges of parameter values <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula>, and polynomial sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.