Abstract

Core decomposition is a classic technique for discovering densely connected regions in a graph with large range of applications. Formally, a k-core is a maximal subgraph where each vertex has at least k neighbors. A natural extension of a k-core is a (k, h)-core, where each node must have at least k nodes that can be reached with a path of length h. The downside in using (k, h)-core decomposition is the significant increase in the computational complexity: whereas the standard core decomposition can be done in {{mathcal {O}}}{left( mright) } time, the generalization can require {{mathcal {O}}}{left( n^2mright) } time, where n and m are the number of nodes and edges in the given graph. In this paper, we propose a randomized algorithm that produces an epsilon -approximation of (k, h) core decomposition with a probability of 1 - delta in {{mathcal {O}}}{left( epsilon ^{-2} hm (log ^2 n - log delta )right) } time. The approximation is based on sampling the neighborhoods of nodes, and we use Chernoff bound to prove the approximation guarantee. We also study distance-generalized dense subgraphs, show that the problem is NP-hard, provide an algorithm for discovering such graphs with approximate core decompositions, and provide theoretical guarantees for the quality of the discovered subgraphs. We demonstrate empirically that approximating the decomposition complements the exact computation: computing the approximation is significantly faster than computing the exact solution for the networks where computing the exact solution is slow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.