Abstract

The recently introduced Video Coding Standard, VVC, presents a novel Quadtree plus Nested Multi-Type Tree (QTMTT) block structure. This structure enables a more flexible block partition and demonstrates enhanced compression performance compared to its predecessor, HEVC. However, The introduction of the new structure has led to a more complex partition search process, resulting in a considerable increase in time complexity. The QTMTT structure yields diverse Coding Unit (CU) block sizes, posing challenges for CNN model inference. In this study, we propose a representation structure termed Block Segmentation and Block Connection (BSC), rooted in texture features. This ensures that partial CU blocks are uniformly represented in size. To address different-sized CUs, various levels of CNN models are designed for prediction. Moreover, we introduce a post-processing method and a multi-thresholding scheme to further mitigate errors introduced by CNNs. This allows for flexible and adjustable acceleration, achieving a trade-off between coding time complexity and performance. Experimental results indicate that, in comparison to VTM-10.0, our “Fast” scheme reduces the average complexity by 57.14% with a 1.86% increase in BDBR. Meanwhile, the “Moderate” scheme reduces average complexity by 50.14% with only a 1.39% increase in BDBR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.