Abstract

We develop a linear time method for transforming clusters of 2D-point data into area data while identifying the shape robustly. This method translates a data layer into a space filling layer where shaped clusters are identified as the resulting regions. The method is based on robustly identifying cluster boundaries in point data using the Delaunay Diagram. The method can then be applied to modelling point data, to displaying choropleth maps of point data without a reference map, to identifying association rules in the spatial dimension for geographical data mining, or to measuring a gap between clusters for cluster validity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.