Abstract

Our paper presents solutions that can significantly improve the delay performance of putting and retrieving data in and out of cloud storage. We first focus on measuring the delay performance of a very popular cloud storage service Amazon S3. We establish that there is significant randomness in service times for reading and writing small and medium size objects when assigned distinct keys. We further demonstrate that using erasure coding, parallel connections to storage cloud and limited chunking (i.e., dividing the object into a few smaller objects) together pushes the envelope on service time distributions significantly (e.g., 76%, 80%, and 85% reductions in mean, 90th, and 99th percentiles for 2-MB files) at the expense of additional storage (e.g., 1.75 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\times$</tex></formula> ). However, chunking and erasure coding increase the load and hence the queuing delays while reducing the supportable rate region in number of requests per second per node. Thus, in the second part of our paper, we focus on analyzing the delay performance when chunking, forward error correction (FEC), and parallel connections are used together. Based on this analysis, we develop load-adaptive algorithms that can pick the best code rate on a per-request basis by using offline computed queue backlog thresholds. The solutions work with homogeneous services with fixed object sizes, chunk sizes, operation type (e.g., read or write) as well as heterogeneous services with mixture of object sizes, chunk sizes, and operation types. We also present a simple greedy solution that opportunistically uses idle connections and picks the erasure coding rate accordingly on the fly. Both backlog-based and greedy solutions support the full rate region and provide best mean delay performance when compared to the best fixed coding rate policy. Our evaluations show that backlog-based solutions achieve better delay performance at higher percentile values than the greedy solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.