Abstract

Advances in high-throughput sequencing technologies have facilitated the large-scale characterization of B cell receptor (BCR) repertoires. However, the vast amount and high diversity of the BCR sequences pose challenges for efficient and biologically meaningful analysis. Here, we introduce fastBCR, an efficient computational approach for inferring B cell clonal families from massive BCR heavy chain sequences. We demonstrate that fastBCR substantially reduces the running time while ensuring high accuracy on simulated datasets with diverse numbers of B cell lineages and varying mutation rates. We apply fastBCR to real BCR sequencing data from peripheral blood samples of COVID-19 patients, showing that the inferred clonal families display disease-associated features, as well as corresponding antigen-binding specificity and affinity. Overall, our results demonstrate the advantages of fastBCR for analyzing BCR repertoire data, which will facilitate the identification of disease-associated antibodies and improve our understanding of the B cell immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.