Abstract
This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.