Abstract

To develop a method for fast chemical exchange saturation transfer (CEST) imaging. The periodically rotated overlapping parallel lines enhanced reconstruction (PROPELLER) sampling scheme was introduced to shorten the acquisition time. Deep neural network was employed to reconstruct CEST contrast images. Numerical simulation and experiments on a creatine phantom, hen egg, and in vivo tumor rat brain were performed to test the feasibility of this method. The results from numerical simulation and experiments show that there is no significant difference between reference images and CEST-PROPELLER reconstructed images under an acceleration factor of 8. Although the deep neural network is trained entirely on synthesized data, it works well on reconstructing experimental data. The proof of concept study demonstrates that the combination of the PROPELLER sampling scheme and the deep neural network enables considerable acceleration of saturated image acquisition and may find applications in CEST MRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.