Abstract

AbstractAlthough some strategies have been triggered to address the intrinsic drawbacks of zinc (Zn) anodes in aqueous Zn‐ion batteries (ZIBs), the larger issue of Zn anodes unable to cycle at a high current density with large areal capacity is neglected. Herein, the zinc phosphorus solid solution alloy (ZnP) coated on Zn foil (Zn@ZnP) prepared via a high‐efficiency electrodeposition method as a novel strategy is proposed. The phosphorus (P) atoms in the coating layer are beneficial to fast ion transfer and reducing the electrochemical activation energy during Zn stripping/plating processes. Besides, a lower energy barrier of Zn2+transferring into the coating can be attained due to the additional P. The results show that the as‐prepared Zn@ZnP anode in the symmetric cell can be cycled at a current density of 15 mA cm−2with an areal capacity of 48 mAh cm−2(depth of discharge, DOD ≈ 82%) and even at an ultrahigh current density of 20 mA cm−2and DOD ≈ 51%. Importantly, a discharge capacity of 154.4 mAh g−1in the Zn/MnO2full cell can be attained after 1000 cycles at 1 A g−1. The remarkable effect achieved by the developed strategy confirms its prospect in the large‐scale application of ZIBs for high‐power devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.