Abstract

High power impulse magnetron sputtering (HiPIMS) plasmas exhibit a high ionization fraction of the sputtered material and ions with high kinetic energies, which produce thin films with superior quality. These ion energy distribution functions (IEDF) contain energetic peaks, which are believed to be linked to a distinct electrical potential hump inside rotating localized ionization zones, so called spokes, at target power densities above 1 kW cm−2. Any direct measurement of this electrical potential structure is, however, very difficult due to the dynamic nature of the spokes and the very high local power density, which hampers the use of conventional emissive probes. Instead, we use a careful analysis of the IEDFs for singly and doubly charged titanium ions from a HiPIMS plasma at varying target power density. The energy peaks in the IEDFs measured at the substrate depend on the point of ionization and any charge exchange collisions on the path between ionization and impact at the substrate. Thereby, the IEDFs contain a convoluted information about the electrical potential structure inside the plasma. The analysis of these IEDFs reveal that higher ionization states originate at high target power densities from the central part of the plasma spoke, whereas singly charged ions originate from the perimeter of the plasma spoke. Consequently, we observe different absolute ion energies with the energy of Ti2+ being slightly higher than two times the energy of Ti+. Additional peaks are observed in the IEDFs of Ti+ originating from charge exchange reactions from Ti2+ and Ti3+ with titanium neutrals. Based on this analysis of the IEDFs, the structure of the electrical potential inside a spoke is inferred yielding = 25 V above the plasma potential, irrespective of target power density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call