Abstract
Although detailed atomic models may be applied for a full description of solvation, simpler phenomenological models are particularly useful to interpret the results for scanning many, large, complex systems where a full atomic model is too computationally expensive to use. Among the most costly are solvation free energy evaluations by simulation. Here we develop a fast way to calculate electrostatic solvation free energy while retaining much of the accuracy of explicit solvent free energy simulation. The basis of our method is to treat the solvent not as a structureless dielectric continuum, but as a structured medium by making use of universal proximal radial distribution functions. Using a deca-alanine peptide as a test case, we compare the use of our theory with free energy simulations and traditional continuum estimates of the electrostatic solvation free energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.