Abstract
We develop a bit manipulation technique for single precision floating point numbers which leads to new algorithms for fast computation of the cube root and inverse cube root. It uses the modified iterative Newton–Raphson method (the first order of convergence) and Householder method (the second order of convergence) to increase the accuracy of the results. The proposed algorithms demonstrate high efficiency and reduce error several times in the first iteration in comparison with known algorithms. After two iterations 22.84 correct bits were obtained for single precision. Experimental tests showed that our novel algorithm is faster and more accurate than library functions for microcontrollers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.