Abstract
The mode of operation and theoretical concept behind a type of near-infrared spectrometer is discussed, which is used to measure concentrations of glucose, ethanol, CaCl2, and KCl solutions in water, respectively. The main features of the instrument are its potential for short time-to-measurement resolution on the order of tens of milliseconds, its broad spectral bandwidth from 1.0 to 2.4 μm, and its ruggedness. These features allow the device to operate remotely in field applications and to utilize a wide variety of optical interfaces based on state-of-the-art fiber optic technology. Also, they provide a straightforward path to miniaturization with the concomitant enhancement in time resolution and applicability of the instrument and the technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.