Abstract
Multiview multi-instance multilabel learning (M3L) is a popular research topic during the past few years in modeling complex real-world objects such as medical images and subtitled video. However, existing M3L methods suffer from relatively low accuracy and training efficiency for large datasets due to several issues: 1) the viewwise intercorrelation (i.e., the correlations of instances and/or bags between different views) are neglected; 2) the diverse correlations (e.g., viewwise intercorrelation, interinstance correlation, and interlabel correlation) are not jointly considered; and 3) high computation burden for training process over bags, instances, and labels across different views. To resolve these issues, a novel framework called fast broad M3L (FBM3L) is proposed with three innovations: 1) utilization of viewwise intercorrelation for better modeling of M3L tasks while existing M3L methods have not considered; 2) based on graph convolutional network (GCN) and broad learning system (BLS), a viewwise subnetwork is newly designed to achieve joint learning among the diverse correlations; and 3) under BLS platform, FBM3L can learn multiple subnetworks jointly across all views with significantly less training time. Experiments show that FBM3L is highly competitive (or even better than) in all evaluation metrics up to 64% in average precision (AP) and much faster than most M3L (or MIML) methods (up to 1030 times), especially on large multiview datasets ( ≥ 260 K objects).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.