Abstract

Advanced bit manipulation operations are not efficiently supported by commodity word-oriented microprocessors. Programming tricks are typically devised to shorten the long sequence of instructions needed to emulate these complicated bit operations. As these bit manipulation operations are relevant to applications that are becoming increasingly important, we propose direct support for them in microprocessors. In particular, we propose fast bit gather (or parallel extract), bit scatter (or parallel deposit) and bit permutation instructions (including group, butterfly and inverse butterfly). We show that all these instructions can be implemented efficiently using both the fast butterfly and inverse butterfly network datapaths. Specifically, we show that parallel deposit can be mapped onto a butterfly circuit and parallel extract can be mapped onto an inverse butterfly circuit. We define static, dynamic and loop invariant versions of the instructions, with static versions utilizing a much simpler functional unit. We show how a hardware decoder can be implemented for the dynamic and loop-invariant versions to generate, dynamically, the control signals for the butterfly and inverse butterfly datapaths. The simplest functional unit we propose is smaller and faster than an ALU. We also show that these instructions yield significant speedups over a basic RISC architecture for a variety of different application kernels taken from applications domains including bioinformatics, steganography, coding, compression and random number generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.