Abstract
The discrete procedures for pricing Parisian/ParAsian options depend, in general, on three dimensions: time, space, time spent over the barrier. Here we present some combinatorial and lattice procedures which reduce the computational complexity to second order. In the European case the reduction was already given by Lyuu-Wu [11] and Li-Zhao [10], in this paper we present a more efficient procedure in the Parisian case and a different approach (again of order 2) in the ParAsian case. In the American case we present new procedures which decrease the complexity of the pricing problem for the Parisian/ParAsian knock-in options. The reduction of complexity for Parisian/ParAsian knockout options is still an open problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.