Abstract
In several scientific and industrial applications, it is desirable to build compact, interpretable learning models where the output depends on a small number of input features. Recent work has shown that such best-subset selection-type problems can be solved with modern mixed integer optimization solvers. Despite their promise, such solvers often come at a steep computational price when compared with open-source, efficient specialized solvers based on convex optimization and greedy heuristics. In “Fast Best-Subset Selection: Coordinate Descent and Local Combinatorial Optimization Algorithms,” Hussein Hazimeh and Rahul Mazumder push the frontiers of computation for best-subset-type problems. Their algorithms deliver near-optimal solutions for problems with up to a million features—in times comparable with the fast convex solvers. Their work suggests that principled optimization methods play a key role in devising tools central to interpretable machine learning, which can help in gaining a deeper understanding of their statistical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.