Abstract

The beam alignment (BA) problem consists in accurately aligning the transmitter and receiver beams to establish a reliable communication link in wireless communication systems. Existing BA methods search the entire beam space to identify the optimal transmit-receive beam pair. This incurs a significant latency when the number of antennas is large. In this work, we develop a bandit-based fast BA algorithm to reduce BA latency for millimeter-wave (mmWave) communications. Our algorithm is named Two Phase Heteroscedastic Track-and-Stop (2PHT&S). We first formulate the BA problem as a pure exploration problem in multi-armed bandits in which the objective is to minimize the required number of time steps given a certain fixed confidence setting. By taking advantage of the correlation structure among beams that the information from nearby beams are similar and the heteroscedastic property that the variance of the reward of an arm (beam) is linearly related to its mean, the proposed algorithm groups all beams into several sets of beams such that the optimal beam set is first selected, and the optimal beam is identified from this set after that. Theoretical analysis and simulation results demonstrate the superiority of the proposed algorithm vis-à-vis other baseline competitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.