Abstract

ABSTRACT The determination of the physical parameters of gravitational wave events is a fundamental pillar in the analysis of the signals observed by the current ground-based interferometers. Typically, this is done using Bayesian inference approaches which, albeit very accurate, are very computationally expensive. We propose a convolutional neural network approach to perform this task. The convolutional neural network is trained using simulated signals injected in a Gaussian noise. We verify the correctness of the neural network’s output distribution and compare its estimates with the posterior distributions obtained from traditional Bayesian inference methods for some real events. The results demonstrate the ability of the convolutional neural network to produce posterior distributions that are compatible with the traditional methods. Moreover, it achieves a remarkable inference speed, lowering by orders of magnitude the times of Bayesian inference methods, enabling real-time analysis of gravitational wave signals. Despite the observed reduced accuracy in the parameters, the neural network provides valuable initial indications of key parameters of the event such as the sky location, facilitating a multimessenger approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call