Abstract

We have developed a method for permeabilizing axons and reactivating the fast transport of microscopically visible organelles. Saltatory movements of organelles in motor axons isolated from lobster walking legs were observed using Nomarski optics and time-lapse video microscopy. In the center of the axon most of the particles and mitochondria moved in the retrograde direction, but immediately below the axolemma the majority moved in the anterograde direction. When axons were permeabilized with 0.02% saponin in an adenosine 5'-triphosphate (ATP)-free "internal" medium, all organelle movement ceased. Saltatory movements resembling those in intact axons immediately reappeared upon the addition of MgATP. Very slight movement could be detected with ATP concentrations as low as 10 microM, and movement appeared to be maximal with 1 to 5 mM ATP. Vanadate, which does not affect axonal transport in intact axons, inhibited the reactivated organelle movements in permeabilized axons. Movement was rapidly and reversibly inhibited by 50 to 100 microM sodium orthovanadate. The effects of vanadate, including the time course of inhibition, its reversibility, and its concentration dependence, are consistent with the hypothesis that a dyneinlike like molecule may play a role in the mechanism of fast axonal transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.