Abstract

The paper discusses new, very efficient augmentation algorithms and theorems related to maximising the flow in single-commodity and multi-commodity networks. For the first time, efficient algorithms with linear average running time O(m) in the size m of the network, are proposed for restoring the maximum flow in single-commodity and multi-commodity networks after a component failure. The proposed algorithms are particularly suitable for discrete-event simulators of repairable production networks whose analysis requires generating thousands of simulation histories, each including hundreds of component failures. In this respect, a new, very efficient augmentation method with linear running time has been proposed for restoring the maximum output flow of oil in oil and gas production networks, after a component failure. Another important application of the proposed algorithms is in networks controlled in real time, where upon failure, the network flows need to be redirected quickly in order to maintain a maximum output flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.