Abstract

The Sources Reconstruction Method (SRM) is a noninvasive technique for, among other applications, antenna characterization. The SRM is based on obtaining a distribution of equivalent currents that radiate the same field as the antenna under test. The computation of these currents requires solving a linear system, usually ill-posed, that may be very computationally demanding for commercial antennas. Graphics Processing Units (GPUs) are an interesting hardware choice for solving compute-bound problems that are prone to parallelism. In this paper, we present an implementation on GPUs of the SRM applied to antenna characterization that is based on a compute-bound algorithm with a high degree of parallelism. The GPU implementation introduced in this work provides a dramatic reduction on the time cost compared to our CPU implementation and, in addition, keeps the low-memory footprint of the latter. For the sake of illustration, the equivalent currents are obtained on a base station antenna array and a helix antenna working at practical frequencies. Quasi real-time results are obtained on a desktop workstation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.