Abstract

Remotely sensed hyperspectral sensors provide image data containing rich information in both the spatial and the spectral domain, and this information can be used to address detection tasks in many applications. One of the most widely used and successful algorithms for anomaly detection in hyperspectral images is the RX algorithm. Despite its wide acceptance and high computational complexity when applied to real hyperspectral scenes, few approaches have been developed for parallel implementation of this algorithm. In this paper, we evaluate the suitability of using a hybrid parallel implementation with a high-dimensional hyperspectral scene. A general strategy to automatically map parallel hybrid anomaly detection algorithms for hyperspectral image analysis has been developed. Parallel RX has been tested on an heterogeneous cluster using this routine. The considered approach is quantitatively evaluated using hyperspectral data collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer system over the World Trade Center in New York, 5 days after the terrorist attacks. The numerical effectiveness of the algorithms is evaluated by means of their capacity to automatically detect the thermal hot spot of fires (anomalies). The speedups achieved show that a cluster of multi-core nodes can highly accelerate the RX algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.