Abstract

We consider the problem of adaptive subspace tracking, when the rank of the subspace we seek to estimate is assumed to be known. Starting from the data projection method (DPM), which constitutes a simple and reliable means for adaptively estimating and tracking subspaces, we develop a fast and numerically robust implementation of DPM, which comes at a considerably lower computational cost. Most existing schemes track subspaces corresponding either to the largest or to the smallest singular values, while our DPM version can switch from one subspace type to the other with a simple change of sign of its single parameter. The proposed algorithm provides orthonormal vector estimates of the subspace basis that are numerically stable since they do not accumulate roundoff errors. In fact, our scheme constitutes the first numerically stable, low complexity, algorithm for tracking subspaces corresponding to the smallest singular values. Regarding convergence towards orthonormality our scheme exhibits the fastest speed among all other subspace tracking algorithms of similar complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.