Abstract

In this paper, we suggest a new method of fast and stable calculation of the discrete orthogonal moments of Charlier and their inverses. This method is meant to accelerate the computation time and improve the quality of images reconstruction. In this method, we have combined two main concepts. The first concept is the digital filters based on the Z-transform to accelerate the calculation process of the discrete orthogonal moments of Charlier. The second concept is the partitioning of the image into a set of blocks of fixed sizes where each block is processed independently. The significant reduction in the image space during partitioning makes it possible to represent the minute details of the image with only low orders of Charlier’s discrete orthogonal moments, which ensures the digital stability during the processing of the image. In order to demonstrate the efficiency, stability, and precision of our method compared to other existing methods, some simulations have been performed on different types of binary images and gray images with and without noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.