Abstract

The present study examines the long-term evolution of the Subantarctic Mode Water (SAMW) in the south Indian Ocean (SIO) based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) extended simulations through 2300 under Representative Concentration Pathways 4.5 (RCP4.5). The SAMW in the SIO shrinks and thins rapidly during the fast radiative forcing increasing period between 2000 and 2100. After 2100, when the radiative forcing stabilizes, the SAMW expands and thickens slowly. The response of SAMW is dependent both on the evolution of surface buoyancy forcing and overlying westerly wind stress. During year 2000–2100, the surface heat flux dominates the net buoyancy gain over the SAMW formation region, whereas the enhanced westerly wind contributes to a lesser extent due to its poleward shift. As the radiative forcing increases rapidly from 2000 to 2100, the buoyancy gain over the SAMW formation region results in a fast shoaling mixed layer and a reduction in the SAMW subduction rate. The surface intensified warming enhances stratification and reduces the SAMW that is quantified by the volume of low potential vorticity (PV) water. Consequently, the SAMW shrinks and thins fastly. When the radiative forcing stabilizes after 2100, the warming is greater in the subsurface than the surface, and the associated slow destratification gradually increases the low PV water volume. Hence, the SAMW expands and thickens slowly. The distinct fast and slow responses of SAMW have implications for the heat uptake and circulation of the SIO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call