Abstract

We study the phase and amplitude dynamics of small perturbations in 3 + 1 dimensional anti-de Sitter spacetime using the truncated resonant approximation, also known as the two time framework. We analyse the phase spectrum for different classes of initial data and find that higher frequency modes turn on with coherently aligned phases. Combining numerical and analytical results, we conjecture that there is a class of initial conditions that collapse in infinite slow time and to which the well-studied case of the two-mode, equal energy initial data belongs. We additionally study perturbations that collapse in finite time, and find that the energy spectrum approaches a power law, with the energy per mode scaling approximately as the inverse first power of the frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call