Abstract

As the applications of wireless sensor networks continue to expand, it is important to support fast and simultaneous data aggregation over multiple regions for advanced data analysis. In this paper, we propose a solution by using a novel distributed data structure called distributed data cube (DDC). A DDC maintains a set of special forms of aggregate values (prefix sum, prefix average, prefix max, and prefix min) in distributed sensor nodes. We will first present fast algorithms to build a DDC within a sharp time bound. Then, we will present efficient distributed query-processing algorithms to handle aggregate queries by using a DDC. For a query region with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> sensor nodes, our algorithms can return within <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">O</i> (√ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> ) time. Finally, extensive simulation studies confirm that a DDC can be built very quickly, which is consistent with the theoretical time bound. The network traffic injected while constructing a DDC is acceptable and also scalable as the network size grows. Query processing on a DDC is fast and energy efficient in terms of the time units needed and the number of messages incurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.