Abstract

We revisit the Subset Sum problem over the finite cyclic group $\mathbb{Z}_m$ for some given integer $m$. A series of recent works has provided near-optimal algorithms for this problem under the Strong Exponential Time Hypothesis. Koiliaris and Xu (SODA'17, TALG'19) gave a deterministic algorithm running in time $\tilde{O}(m^{5/4})$, which was later improved to $O(m \log^7 m)$ randomized time by Axiotis et al. (SODA'19). In this work, we present two simple algorithms for the Modular Subset Sum problem running in near-linear time in $m$, both efficiently implementing Bellman's iteration over $\mathbb{Z}_m$. The first one is a randomized algorithm running in time $O(m \log^2 m)$, that is based solely on rolling hash and an elementary data-structure for prefix sums; to illustrate its simplicity we provide a short and efficient implementation of the algorithm in Python. Our second solution is a deterministic algorithm running in time $O(m\ \mathrm{polylog}\ m)$, that uses dynamic data structures for string manipulation. We further show that the techniques developed in this work can also lead to simple algorithms for the All Pairs Non-Decreasing Paths Problem (APNP) on undirected graphs, matching the near-optimal running time of $\tilde{O}(n^2)$ provided in the recent work of Duan et al. (ICALP'19).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.