Abstract
In this paper, we study the problem of finding a common solution to variational inequality and fixed point problems for a countable family of Bregman weak relatively nonexpansive mappings in real reflexive Banach spaces. Two inertial-type algorithms with adaptive step size rules for solving the problem are presented and their strong convergence theorems are established. The usage of the Bregman distances and the Armijo line search technique (which avoids the need to know a priori the Lipschitz constant of the involved operators), enable great flexibility of the proposed scheme, and besides their theoretical extensions, it might also have a practical potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.