Abstract
Chiral recognition, especially rendering specificity in biomolecular recognition, is a basic property of many biomolecules. Being closely related to the chirality of biomolecules, it has been regarded as one of the most important areas in biological and medical sciences due to the different effects in biological systems. Based on the possible interactions between chiral selectors and the enantiomers, various methods including chromatographic techniques such as gas or liquid chromatography, electromigration techniques such as capillary electrophoresis and so on were developed for the chiral separation and recognition of different optical isomers. Recently, chemical sensors and biosensors have been gradually designed and developed for the analysis of chiral compounds. Based on the difference in electrical response to different isomers, chiral identifications can be successfully implemented. Major successes in enantiomer recognition based on electrochemical analysis are reviewed. The research data available for highly enantio-selective recognition are categorized into several subgroups according to specific topics and critically discussed for the period since 1994, and the latest techniques for electrochemical chiral recognition of enantiomers were also reviewed. Simultaneously, a brief conclusive summary and future perspectives are presented, and the challenges and scientific prospects of the newest generation of electrode modifiers in electrochemical sensing are also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.