Abstract

Deoxyribonucleoside triphosphates (dNTPs) are used in DNA synthesis and repair. Even slight imbalances can have adverse biological effects. This study validates a fast and sensitive HPLC-MS/MS method for direct quantification of intracellular dNTPs from tissue. Equal volumes of methanol and water were used for nucleotide extraction from mouse heart and gastrocnemius muscle and isolated cardiomyocytes followed by centrifugation to remove particulates. The resulting supernatant was analyzed on a porous graphitic carbon chromatography column using an elution gradient of ammonium acetate in water and ammonium hydroxide in acetonitrile with a run time of just 10min. Calibration curves of all dNTPs ranged from 62.5 to 2500fmol injections and demonstrated excellent linearity (r2>0.99). The within day and between day precision, as measured by the coefficient of variation (CV (%)), was <25% for all points, including the lower limit of quantification (LLOQ). The inter-day accuracy was within 12% of expected concentration for the LLOQ and within 7% for all other points on the calibration curve. The intra-day accuracy was within 22% for the LLOQ and within 11% for all points on the curve. Compared to existing methods, this study presents a faster and more sensitive method for dNTP quantification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.