Abstract

A Cu12Sb3.6Bi0.4S10Se3 glass was prepared by melt spinning and crystallized by heat treatments at selected temperatures, the total preparation procedure taking less than one day. The sample characterization by powder X-ray diffraction, scanning and transmission electron microscopy complemented with EDS indicate the formation of compact materials, with a tetrahedrite relative weight fraction higher than 90% when treated at temperatures close to the crystallization peaks (∼200° C). Selenium enters the tetrahedrite structure, while bismuth precipitates in submicron and nanosized spherical shape phases depleted in copper and enriched in antimony, sulfur and selenium (when compared with the matrix composition). The characterization of electrical transport properties (electrical resistivity and Seebeck coefficient) indicate a behavior similar to that obtained by other methods on Cu12Sb4S13, with a maximum power factor of ∼400 μW/K2m at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.