Abstract

Multi-pattern matching is known to require intensive memory accesses and is often a performance bottleneck. Hence specialized hardware-accelerated algorithms are being developed for line-speed packet processing. While several pattern matching algorithms have already been developed for such applications, we find that most of them suffer from scalability issues. We present a hardware-implementable pattern matching algorithm for content filtering applications, which is scalable in terms of speed, the number of patterns and the pattern length. We modify the classic Aho-Corasick algorithm to consider multiple characters at a time for higher throughput. Furthermore, we suppress a large fraction of memory accesses by using Bloom filters implemented with a small amount of on-chip memory. The resulting algorithm can support matching of several thousands of patterns at more than 10 Gbps with the help of a less than 50 KBytes of embedded memory and a few megabytes of external SRAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.