Abstract
In this paper, we propose a protocol to fast and robustly generate two-atom singlet state by designing the evolution operator with the help of quantum Zeno dynamics. The population of the intermediate state can be controlled by system parameters. The pulses in the protocol can be fitted as Gaussian functions, which are beneficial to the experimental feasibility. Besides, the performance of various decoherence factors, such as spontaneous emission, cavity decay and fiber photon leakage, is discussed by numerical simulations. The results show that the protocol is fast and robust against decoherence and operational imperfection. Finally, the protocol is generalized to realize three-atom singlet state by the same principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.