Abstract
The development of portable haematology analysers receives increased attention due to their deployability in resource-limited or emergency settings. Lens-free in-line holographic microscopy is one of the technologies that is being pushed forward in this regard as it eliminates complex and expensive optics, making miniaturisation and integration with microfluidics possible. On-chip flow cytometry enables high-speed capturing of individual cells in suspension, giving rise to high-throughput cell counting and classification. To perform a real-time analysis on this high-throughput content, we propose a fast and robust framework for the classification of leukocytes. The raw data consists of holographic acquisitions of leukocytes, captured with a high-speed camera as they are flowing through a microfluidic chip. Three different types of leukocytes are considered: granulocytes, monocytes and T-lymphocytes. The proposed method bypasses the reconstruction of the holographic data altogether by extracting Zernike moments directly from the frequency domain. By doing so, we introduce robustness to translations and rotations of cells, as well as to changes in distance of a cell with respect to the image sensor, achieving classification accuracies up to 96.8%. Furthermore, the reduced computational complexity of this approach, compared to traditional frameworks that involve the reconstruction of the holographic data, allows for very fast processing and classification, making it applicable in high-throughput flow cytometry setups.
Highlights
Leukocytes or white blood cells play an important role in the body’s immune system as they are responsible for protecting from infections and invading organisms
To perform a real-time analysis on this high-throughput content, we propose a fast and robust framework for the classification of leukocytes
The raw data consists of holographic acquisitions of leukocytes, captured with a highspeed camera as they are flowing through a microfluidic chip
Summary
Leukocytes or white blood cells play an important role in the body’s immune system as they are responsible for protecting from infections and invading organisms. Leukocyte differentials are performed to determine the concentration of each type of white blood cell present in a subject’s blood. Both leukocyte counts and leukocyte differentials are essential measures to determine the subject’s health as they can detect hidden infections and alert specialists of specific medical conditions, such as autoimmune diseases and blood disorders. Both tests are used to monitor the effectiveness of chemotherapy during cancer treatment [1]. A fast, reliable and accurate method for leukocyte characterization remains an ongoing research goal [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.