Abstract

A light-field camera combines optics and computation to provide the ability to perform ranging. Many methods and algorithms, which are time-consuming and noise-sensitive, have been proposed for per-pixel depth estimation. We present a Fourier domain ranging method for light fields (LFs). Instead of estimating the depth for every pixel, we attempt to detect the depths of the different planes at which objects are located. The method is somewhat like using the energy in the focal stack, but it is carried out in a more efficient way. Our method has the advantages of speediness and robustness compared with traditional per-pixel depth estimation methods. In addition to the ranging algorithm, we also demonstrate the idea and application of a region adaptive denoising filter, in which the depth parameters are tuned by the proposed method. We include results for synthetic LFs, the Stanford LF archives, and LFs captured with a Lytro camera, exploiting the algorithm complexity, accuracy, depth resolution, and noise performance of our method. Our method uses less computation and is more robust than per-pixel depth estimation, making it appropriate for many applications, such as autorefocusing and autodenoising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call